Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-24 @ 4:19 PM
Ignite Modification Date: 2025-12-24 @ 4:19 PM
NCT ID: NCT03105466
Brief Summary: The performance of keratoplasty is hampered by the limited availability of donor cornea in many countries, especially in Asia. For this reason, attempts have been made to fabricate artificial substitutes for natural human cornea. So far, all polymeric biomaterials, such as collagen configurations and plastic compression, could mimic the functional optically transparent but failed to replicate the complicate three-dimension microstructure of natural cornea. Therefore, despite some favorable results yielded by polymeric biomaterials, they cannot be suited for long-term use. To overcome these disadvantages, in recent years, porcine cornea appeared specifically attractive for xenotransplantation, because of its accessibility and similarities to natural human cornea. However, xenotransplantation using fresh porcine cornea can occurs hyperacute immune rejection, resulting in graft failure. Such transplant rejection can be substantially lessened by using acellular porcine cornea (APC), which preserves the constructure of natural cornea, whilst having well biocompatibility and low antigenicity. These properties feature APC particularly suitable for high-risk keratoplasty, such as corneal grafting in infectious keratitis. Use of APC in LK has been shown promise in many preclinical animal studies and initially in human clinic trail. However, to optimize APC biological and biomechanical properties, the strategies for its preparation has evolved extensively over recent years, like various decellularization approaches (e.g. detergents, enzymes, human sera, hypertonic solutions and et al) and additional procedures (e.g. collagen re-crosslinking and repeated frozen-dry). Therefore, in the current study, the investigators analyzed the early surgical outcomes of deep anterior lamellar keratoplasty (DALK) using the APC that was very recently approved by the National Institutes for Food and Drug Control (NIFDC) of China for clinic practice, for management of infective keratitis, including fungal, viral and acanthamoeba keratitis. Here major concern of this study was to clarify the behavior of APC after implantation in participants.
Study: NCT03105466
Study Brief:
Protocol Section: NCT03105466