Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-25 @ 4:54 AM
Ignite Modification Date: 2025-12-25 @ 4:54 AM
NCT ID: NCT05002218
Brief Summary: Balance and aerobic training show promise as treatments for degenerative cerebellar diseases, but the neural effects of both training methods are unknown. The goal of this project is to evaluate how each training method impacts the brain, and particularly, the degenerating cerebellum. Various neuroimaging techniques will be used to accomplish this goal and test the hypothesis that balance training impacts brain structures outside the cerebellum whereas aerobic training causes more neuroplastic changes within the cerebellum.
Detailed Description: Degenerative cerebellar diseases are a group of disorders that cause severe disability and can be fatal. There are currently no known disease-modifying treatments available for use, and there is a critical need to find treatments that slow disease progression and allow affected individuals to live more functional lives. Balance and aerobic training show promise as treatments for degenerative cerebellar diseases, but the neural effects of both training methods have not been thoroughly investigated. It is crucial to understand how the training impacts the brain, and particularly the cerebellum, in order to determine if one training method is better at slowing disease progression than the other. The goal of this proposal is to compare the neural effects of balance versus aerobic training in individuals with degenerative cerebellar diseases. The investigator hypothesizes that aerobic training causes neuroplastic changes within the cerebellum whereas balance training causes improvements for people with cerebellar degeneration by impacting brain structures outside the cerebellum. If this hypothesis is true, aerobic training may have more influence on disease progression than balance training as it directly impacts the cerebellum. To investigate the hypothesis, various neuroimaging techniques will be used. In AIM 1, the investigator will compare cerebellar volume before and after the participants perform either 6-months of balance or aerobic training. In AIM 2, the investigator will investigate whether neural changes have clinical significance by correlating cerebellar volume changes with clinical measures of ataxia. Finally, for AIM 3, the investigator will use diffusion tensor imaging and resting state fMRI scans to examine how both training methods impact cerebellar microstructure and functional cerebellar connections. The investigator hopes that a detailed understanding of how each training method impacts the cerebellum will lead to more targeted training regimens with the goal of slowing disease progression of these devastating diseases.
Study: NCT05002218
Study Brief:
Protocol Section: NCT05002218