Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-25 @ 4:31 AM
Ignite Modification Date: 2025-12-25 @ 4:31 AM
NCT ID: NCT07299318
Brief Summary: Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy in clinical practice, accounting for approximately 85% of all thyroid malignancies. The occurrence of cervical lymph node metastasis further increases the risk of local tumor recurrence and distant metastasis, thereby reducing patient survival rates. Pathological examinations reveal that approximately 30-80% of PTC patients have lymph node metastasis. Early detection of metastatic lymph nodes and the development of individualized treatment plans are crucial for improving patient prognosis. Currently, the primary method for diagnosing lymph node metastasis is ultrasound-guided fine-needle aspiration, but its accuracy is limited by sample quality and carries a risk of false-negative results. In recent years, deep learning technology has demonstrated significant potential in the field of medical image analysis. Therefore, the investigators aim to develop a deep learning model based on neck ultrasound to more accurately predict lymph node metastasis.
Study: NCT07299318
Study Brief:
Protocol Section: NCT07299318