Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-25 @ 4:13 AM
Ignite Modification Date: 2025-12-25 @ 4:13 AM
NCT ID: NCT07189520
Brief Summary: Current decision tools (TNM, MRI/PET, CEA, and other serum markers, as well as single-marker genomics) are insufficiently predictive of responders, fail to detect early MRD in many cases, and rarely connect molecular biology to dynamic perioperative data. SAFE-AI will build and validate multimodal, explainable GenAI models that fuse liquid/tissue multi-omics with radiology and clinical trajectories to: (i) detect MRD earlier, (ii) improve recurrence-risk calibration, and (iii) support non-invasive "virtual biopsy"-inferring tissue-level features from blood profiles, and vice-versa, to mitigate missing-modality gaps. This is grounded in the strong mechanistic premise that integrating heterogeneous molecular signals with imaging captures tumour-host biology more completely than single-modality assays, enabling actionable, calibrated risk estimates for rectal and oesophageal cancer. The clinical hypothesis is that such integrated models can improve recurrence prediction by at least 20% over guideline baselines, with transparent uncertainty and bias monitoring to meet EU AI Act/MDR expectations.
Detailed Description: Current decision tools (TNM, MRI/PET, CEA, and other serum markers, as well as single-marker genomics) are insufficiently predictive of responders, fail to detect early MRD in many cases, and rarely connect molecular biology to dynamic perioperative data. SAFE-AI will build and validate multimodal, explainable GenAI models that fuse liquid/tissue multi-omics with radiology and clinical trajectories to: (i) detect MRD earlier, (ii) improve recurrence-risk calibration, and (iii) support non-invasive "virtual biopsy"-inferring tissue-level features from blood profiles, and vice-versa, to mitigate missing-modality gaps. This is grounded in the strong mechanistic premise that integrating heterogeneous molecular signals with imaging captures tumour-host biology more completely than single-modality assays, enabling actionable, calibrated risk estimates for rectal and oesophageal cancer. The clinical hypothesis is that such integrated models can improve recurrence prediction by at least 20% over guideline baselines, with transparent uncertainty and bias monitoring to meet EU AI Act/MDR expectations.
Study: NCT07189520
Study Brief:
Protocol Section: NCT07189520