Viewing Study NCT02347995


Ignite Creation Date: 2025-12-24 @ 1:29 PM
Ignite Modification Date: 2026-01-04 @ 4:54 PM
Study NCT ID: NCT02347995
Status: ACTIVE_NOT_RECRUITING
Last Update Posted: 2025-01-30
First Post: 2015-01-08
Is Gene Therapy: True
Has Adverse Events: False

Brief Title: Resistive Training Combined With Nutritional Therapy After Stroke
Sponsor: VA Office of Research and Development
Organization:

Study Overview

Official Title: Resistive Training Combined With Nutritional Therapy After Stroke
Status: ACTIVE_NOT_RECRUITING
Status Verified Date: 2025-01
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: REPS
Brief Summary: Stroke survivors experience severe muscle wasting during the chronic phase of recovery, with implications for strength, function and general health. Although resistive exercise training effectively combats this problem, it is unknown whether sub-optimal protein intake limits the observed gains in skeletal muscle growth. Skeletal muscle adaptations may occur when resistive training (RT) is combined with nutritional therapy in the form of post- exercise protein consumption. This study would be the first to directly compare RT+protein supplementation to RT+placebo (same calories as protein supplement) in those with chronic hemiparesis caused by stroke, providing evidence-based rationale for combination therapy in the clinical care of this population.
Detailed Description: The VA research team has played a prominent role in documenting the significant skeletal muscle atrophy that accompanies chronic hemiparesis after disabling stroke. Muscle volume is reduced by 24% in paretic vs. non-paretic legs, having significant implications for strength, function, fitness, metabolism and general health. The investigators' previous work establishes progressive, high-intensity resistive training (RT) as an effective rehabilitation strategy for older stroke survivors, producing thigh muscle hypertrophy on both the paretic and non-paretic sides. Protein supplementation can significantly augment gains in muscle mass after RT in healthy populations, but no experiments have yet been conducted in stroke. New preliminary data from the investigators' group indicates that stroke participants consume 20% less protein than the recommended daily amount for older individuals (0.80 vs. 1.0 g/kg/day) suggesting that relative gains in skeletal muscle could be significantly better in the presence of adequate protein intake. New data also indicates that leg muscle mass predicts resting metabolic rate (RMR) in stroke, implying that a combined nutrition and RT therapy aimed at maximizing muscle gains would translate into improved energy balance, a key factor in rehabilitation success. A better understanding of the true potential for aggressive RT interventions to address stroke-related atrophy and related problems for maximum benefit awaits clinical trials directly comparing RT with and without nutritional therapy. The investigators propose to conduct a 12-week randomized placebo controlled clinical trial comparing the effects of RT+ protein supplementation at 1.2 g/kg/day (RT+PRO) vs. RT+isocaloric placebo (RT+PLA) on body composition, hypertrophy, strength, functional mobility and energy expenditure in chronic stroke.

Study Oversight

Has Oversight DMC: True
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: False
Is an FDA AA801 Violation?:

Secondary ID Infos

Secondary ID Type Domain Link View
HP-00062067 OTHER Baltimore VAMC View